Itô versus Stratonovich calculus in random population growth

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Itô versus Stratonovich calculus in random population growth.

The context is the general stochastic differential equation (SDE) model dN/dt=N(g(N)+sigmaepsilon(t)) for population growth in a randomly fluctuating environment. Here, N=N(t) is the population size at time t, g(N) is the 'average' per capita growth rate (we work with a general almost arbitrary function g), and sigmaepsilon(t) is the effect of environmental fluctuations (sigma>0, epsilon(t) sta...

متن کامل

Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise.

We consider the dynamics of systems in the presence of inertia and colored multiplicative noise. We study the limit where the particle relaxation time and the correlation time of the noise both tend to zero. We show that the limiting equation for the particle position depends on the magnitude of the particle relaxation time relative to the noise correlation time. In particular, the limiting equ...

متن کامل

Itô and Stratonovich Stochastic Calculus

We provide a detailed hands-on tutorial for the R Development Core Team [2014] add-on package Sim.DiffProc [Guidoum and Boukhetala, 2014], for symbolic and floating point computations in stochastic calculus and stochastic differential equations (SDEs). The package implement is introduced and it is explains how to use the snssde1d, snssde2d and snssde3d main functions in this package, for simula...

متن کامل

Population Growth in a Random Environment: Which Stochastic Calculus?

Let N = N(t) be the size (number of individuals, density, biomass) of a population (of animals, plants, bacteria, cells) at time t ≥ 0 and assume the initial population size N(0) = N0 > 0 is known. A general density dependent growth model assumes that the per capita growth rate (abbrev. growth rate) has the form 1 N dN dt = f(N), where f(·) : (0,+∞) 7→ (−∞,+∞) is a continuously differentiable f...

متن کامل

SDE in Random Population Growth

In this paper we extend the recent work of C.A. Braumann [1] to the case of stochastic differential equation with random coefficients. Furthermore, the relationship of the Itô-Stratonovich stochastic calculus to studies of random population growth is also explained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Biosciences

سال: 2007

ISSN: 0025-5564

DOI: 10.1016/j.mbs.2004.09.002